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Interfacial phenomena in glass fibre reinforced
polyester resin with low profile additives
Part I Micromechanical evaluation by pull out testing
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The interfacial response of a glass fibre/unsaturated polyester resin matrix composite has
been evaluated by means of single fiber pull-out tests. The nature of fibre sizing, more
specifically sizing solubility, affects the debonding behavior. A confrontation of
experimental data to current micromechanical models, assuming either mechanical or
energetic criteria, proves quite efficient in relating stability of the debonding process to
sizing characteristics. C© 1999 Kluwer Academic Publishers

Nomenclature
a crack length
α an elastic constant

α1 =
√

2µ

bir f Ef

α2 =
√

2µm

r 2
f Ef ln(R/2r f )

α3 =
√

4πµm

Ef ln(R/r f )
β a constant of Yueet al.’s model
bi effective thickness of fibre-matrix interface
C compliance
Ef modulus of elasticity of the fibre
Em modulus of elasticity of the matrix
Fd debond load
Gi interfacial toughness
H constant of the shear-lag theory
L embedded length
Ld debonded length
m a constant of Hsueh’s model
µ coefficient of friction
µi interface shear modulus
µm matrix shear modulus
νf Poisson’s ratio of the fibre
νm Poisson’s ratio of the matrix
P0 axial load applied to the fibre
ψ an elastic constant of Yueet al.’s model
q0 clamping stress on the fibre
r f fibre radius
Rm matrix outer radius
σd complete debond stress
σ

p
d partial debond stress
σf axial stress to pull out a fibre
τ interfacial shear stress
τa average interfacial shear strength
τd interfacial shear strength

τf interfacial shear stress due to friction
τmax maximum of the interfacial shear stress
zmax critical bonded length

1. Introduction
The mechanical properties of fibre reinforced compos-
ites strongly depend on the specific properties of the
matrix and reinforcing fibers. However, a simple model
based on matrix and fibre mechanical data cannot ac-
count for the composite behavior. Indeed, a third com-
ponent appears when matrix and fibre are brought into
contact, the interface.

Its role is of prime importance because it ensures
stress transfer between matrix and fibres. Moreover,
the interface is the locus of singular behaviors. First,
from a mechanical point of view, introducing fibres in
a polymer matrix leads to stress concentrations pro-
duced by external loads applied to the material, shrink-
age stresses created during curing and thermal residual
stresses. Second, specific intermolecular fibre-matrix
interactions may be responsible for matrix microstruc-
tural changes in the vicinity of the reinforcing element.

This last point is relevant to the concept of inter-
phase. Whereas interface reveals the discontinuity be-
tween matrix and fibre (thickness equal to zero), the
interphase is the three-dimensional zone near the fibre
in which properties are different from bulk matrix ones.
Therefore, proper control of the physical properties of
composite materials requires to understand physico-
chemical phenomena occurring during interface for-
mation, to characterize its final microstructure and to
determine how it may affect the mechanical properties.

The nature of the interface has a large influence on
both the mode of failure and toughness of compos-
ite materials. A strong interface with a high value of
the interfacial shear strengthτd would promote crack
propagation across the fibres, whilst a poor fibre-matrix
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bonding would promote failure by fibre debonding and
pull out [1, 2]. The improvement of composites tough-
ness has been attributed to the latter mechanisms [3, 4].
In contrast, a good adhesion reduces toughness while
increasing compressive strength, flexural strength and
off-axis strength [5, 6]. Along these lines, the objectives
of the present work are to characterize glass fibre re-
inforced unsaturated polyester composites in terms of
interfacial parameters which include the shear strength
τd, the interfacial toughnessGi , the matrix shrinkage
pressureq0 on the fibre and the interfacial friction co-
efficientµ.

Although interfacial strength can be evaluated from
unidirectional composite behavior, the results are
strongly dependent on such factors as the specimen
geometry and the fibre volume fraction. Moreover, a
single and simple mode of testing cannot be performed
because of the complexity of stress distribution in non
isotropic materials.

The use of single filament specimen provides a more
convenient model system, the major advantage of such
samples being to allow direct measurement of interfa-
cial parameters. Different levels of adhesion can be dis-
criminated by single filament tests [7], which in some
instances enable to correlate between micromechani-
cal and macromechanical data [8, 9]. Moreover, funda-
mental informations about debonding process can be
obtained and help to understand macrocomposite be-
havior [10].

Notwithstanding, the results are strongly dependent
on experimental procedure [7] and consequently the
computed interfacial parameters values must not be
considered as absolute ones.

The main micromechanical techniques are the frag-
mentation test, the microindentation test, the mi-
crodebond test and the pull-out test. In the fragmenta-
tion test [5, 7, 11–16], a fibre is carefully aligned down
the center of a dog-bone shape sample. The latter is
loaded in tension and its deformation leads to multiple
fibre failure until saturation of fibre failure process is
reached. The fragment lengths are measured at the end
of the test.

In the microindentation test method [5, 7, 17–18],
an indentor is used to cause fibre debonding in thin
sections of unidirectional composites.

In the microdebond test [5, 7, 14, 15], liquid matrix
drops are deposited on the fibre. After matrix curing, the
drop is placed between two knife edges and debonding
is obtained by an applied tensile load on the fibre.

The pull out test has been retained in the present
work. A single fibre is embedded in a block of resin. The
fibre is pulled from the cured resin by tensile loading
on the fibre.

The latter method is one of the most direct manner
for measuring interfacial parameters. Nevertheless, the
analysis and interpretation of the experimental data turn
out to be a complicated task considering the numerous
theoretical models that have been developed for mod-
elling the pull-out test. A critical review focusing at the
theoretical assumptions will be made. Two very attrac-
tive approaches will be considered and confronted with
experimental results.

2. Interface micromechanics
The fibre pull out from a matrix block is the con-
sequence of two phenomena: debonding and post-
debonding friction of the fibre against the debonded
surfaces. According to some authors, debonding can
be considered either complete or partial. In the case of
a partially debonded fibre, friction parameters must be
taken into account in the analysis.

Theoretical analysis of the pull-out test can be clas-
sified into two kinds of approach. In a mechanical ap-
proach based on a maximum shear stress criterion, the
interface fails when the interfacial shear stress exceeds
the debond shear strengthτd. In an energy-based ap-
proach, the interface is characterized by its work of
fractureGi . Both will be discussed separately in the two
following subsections and the friction behavior will be
the subject of a third one.

2.1. Mechanical approach
The interface fails when the interfacial shear stress
exceeds the critical valueτd. Consequently, the shear
stress distribution along the interface needs to be eval-
uated.

A uniform shear stress along the interface [19] is
often assumed as a first approximation, but this is only
achieved when the matrix is totally plastic. The inter-
facial shear strength is given by:

τd = Fd

2πr f L
(1)

Greszczuk [20, 21] has derived the distribution of the
shear stress along the fibre length in the case of an
elastic matrix. The fibre is embedded in a semi-infinite
matrix to a lengthL and an axial loadP0 is applied to
the fibre (Fig. 1).

The fibre-matrix bonding is assumed to be perfect
(no sliding along the interface). The shear stressτ is
expressed as a function of interface thicknessbi and
interface shear modulusµi . Greszczuk has assumed
that the embedded fibre end carries no load (P(x =
L) = 0). The shear stress along the embedded fiber is
given by:

τ (x) = P0α

2πr f
[sinh(αx)− coth(αL) cosh(αx)] (2)

Figure 1 Semi-infinite pull-out configuration.
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with

α = α1 =
√

2µi

bir f Ef
(3)

In this model, the maximum of the shear stressτmax is
reached at the point where the fibre enters the matrix.
The interface fails whenτmax ≥ τd. The average shear
strength can be defined as:

τa = Fd

2πr f L
= τd

tanh(αL)

αL
(4)

Lawrence [22] reconsidered the shear stress distribution
along the embedded fibre. This time, the shear stressτ

is given byτ ∝ H (u−v), u is the virtual displacement
in the direction of the fibre at a point in the fibre at a
distance (L − x) from the embedded end if the matrix
had the same elastic properties as the fiber,v is the
virtual displacement of the matrix at the same point if
the fibre was replaced by the matrix andH is a constant
from Cox shear-lag theory [23]. The calculation leads to
an expression of the shear stress distribution similar to
that given by Greszczuk (Equation 2), only the constant
α is changed and is given by:

α = α2 =
√

2µm

r 2
f Ef ln(R/2r f )

(5)

with R, the radius of the matrix involved in shear strain.
Takaku and Arridge [24] have developped a similar

model assuming that the shear stressτ is equal toHu.
Then the constantα becomes:

α = α3 =
√

4πµm

Ef ln(R/r f )
(6)

In the three latter models, the fibre is considered to be
embedded in a semi-infinite matrix. When the fibre is
embedded in a coaxial matrix cylinder of outer radius
Rm (Fig. 2) the mechanical equilibrium between the
external load and the internal stress distribution in any
section of the composite must be considered.

Yue and Cheung [25, 26] have derived the expression
of interfacial shear stress in this case:

τ (z) = P0

2πr f

{
β(1− ψ) exp(−βz)

+
[
ψ + (1− ψ) exp(−βL)

β cosh(βz)

sinh(βL)

]}
(7)

τ = P0

πr 2
f

{
−r f

2

(
R2

m

r 2
f

− 1

)
Em

Ef

√
(1+ νm)

[
1+

(
R2

m

r 2
f

− 1

)
Em

Ef

][
R2

m ln

(
Rm

r f

)
− R2

m− r 2
f

2

]
tanh(mL)

}
(9)

Figure 2 Finite pull-out configuration.

β andψ are two constants which depend on the Young’s
moduli of matrix and fiber and the composite compo-
nent sizes.

According to this model, the location of interfacial
crack initiation depends on both the relative modulus
of the matrix and fibre (Ef/Em) and the relative size of
the fibre and the matrix (Rm/r f ). In a composite system
with either a large (Ef/Em) ratio or a small (Rm/r f )
ratio, the interfacial shear stress is maximum at the end
of the embedded fibre. Crack initiation at this particular
location has been observed in glass/silicon [27] and in
nylon/ethylene-propylene [28] systems. In composites
with a small (Ef/Em) ratio and a large (Rm/r f ) ratio,
crack initiation occurs at the point where the fibre enters
the matrix and the debonding strength is given by:

τd = Fd

2πr f
{β(1− ψ) exp(−βL)

+ [ψ + (1− ψ) exp(−βL)]β coth(βL)} (8)

The common assumption to all models discussed
above is that the embedded fibre end carries no load.
Hsueh [29] has taken into consideration the continuity
of deformation at the embedded fibre end, so that the
load atz= 0 is not equal to zero. The interfacial shear
strength is then:
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Figure 3 Partially debonded fibre pull-out configuration.

with m being a constant which depends on the moduli
of composite components, the Poisson’s ratio of the
matrix and the composite component sizes.

The load at the end of the embedded fibre is con-
stant whatever the embedded length. D´esarmot and
Favre [30] have pointed out that this assumption is not
satisfactory whenL →∞.

All the above-mentioned analyses assume a com-
plete debonding along the interface. Lawrence [22] in-
troduced the concept of a partial fibre-matrix debond-
ing. When the maximum of interfacial shear stress is
reached, debonding is initiated at the point where the fi-
bre enters the matrix (a smallEf/Em ratio is assumed),
and either the catastrophic debonding occurs at a con-
stant load or a further increase in load is necessary for
debonding to continue. The factors which control the
nature of debonding are determined when a partially
debonded fibre configuration (Fig. 3) is considered.

In this case, the contribution to the load transfer
process of frictional resistance forces acting over the
debond zoneLd must be taken into account in the anal-
ysis. Lawrence assumed an interfacial shear stress due
to friction τf constant over the whole debonded area,
and he showed that the stage at which debonding be-
comes catastropic is dependent on the ratioτd/τf and
the debonded lengthLd. Yue and Cheung [25] have
theoretically deduced a critical valuezmax of (L − Ld):
as soon aszmax= (L− Ld), catastrophic debonding oc-
curs. Hsueh [31] also introduced partial debonding in
his analysis and considered the Poisson’s contraction of
the loaded fibre. In this case, the interfacial shear stress
due to friction is no more constant over the debond re-
gion. The shear stress distribution has been recalculated
on the basis of his latter model [29].

Some more complicated theoretical models have
been developed [32–34], Nevertheless they do not pro-
vide a major improvement in experimental data analy-
sis. On the contrary, finite element computation of the
shear stress distribution has allowed the validation of a
simple model as Greszczuk’s one [30].

2.2. Energetic approach
The interface is characterised by its fracture toughness
Gi . Debonding is due to a crack propagation along the
interface (Fig. 4).

In the pull-out configuration, the Griffith fracture cri-
terion is given by:

1

2

∂C

∂a
F2

d da = 2πr fGi (10)

Figure 4 Schematic view of crack propagation along the interface.

Exact solution for the complianceC as a function of
crack length is not available, but using an approximate
expression for compliance, the debond stress in the elas-
tic case can be given by [2, 3, 35]:

σd = Fd

πr 2
f

=
√

4EfGi

r f
(11)

We can see that the debond stress and debond load do
not depend on the embedded length, so that this analysis
is not satisfactory.

Gaoet al. [36, 37] included friction in the debond-
ing criterion. The expression of compliance has been
calculated on the basis of the shear lag model from fi-
bre displacement atx= 0 for a perfect bonding, and
the Poisson’s contraction of the loaded fibre has been
taken into account. Then, the partial debond stress for
r f ¿ Rm is given by:

σ
p
d = σ0+ (σ̄ − σ0){1− exp(−λa)} (12)

with σ0, the frictionless debond stress given by expres-
sion (11), ¯σ is a function of the clamping residual stress
on the fibreq0, the elastic properties of fibre and ma-
trix and composite geometry, andλ is a function of the
friction coefficientµ, the elastic properties of fibre and
matrix and composite geometry.

The full debond stress can be obtained by substituting
the crack lengtha by the embedded lengthL. This time,
the debond stress depends on the embedded fibre length.

In a different approach, the strain energy stored in
the composite is determined in order to get the energy
balance equation.

Piggott [38] proposed an expression of the debond
force as a function of the interfacial toughnessGi and
the embedded length. Nevertheless, his analysis is not
satisfactory because the strain energy in the fibre free
length was neglected and because the fracture criterion
was not correctly expressed.

Penn and Lee [39] reexpressed the fracture criterion
and considered the strain energy stored in the fibre free
length to give the energy balance equation:

2πr fGi = dUt

da
+ dUL

da
(13)

with Ut, the strain energy stored in the embedded fibre
length plus the strain energy stored in the surrounding
matrix, andUL, the strain energy stored in the fibre free
length.
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Then, the debond force becomes:

Fd = 2πr f

√
r fGi Ef tanh(αL) (14)

with α a constant given by expression (5).
Mai [40] has introduced friction in this analysis lead-

ing to an expression of the partial debond stress as a
function of the crack lengtha.

2.3. Friction
Friction occurs when new surfaces are created at the
interface. The frictional resistance force is a function
of the friction coefficientµ and the clamping residual
stressq0.

In the simplest model, the axial stress required to pull
out the fibre is given by [25–28]:

σf = 2τfx

r f
= 2µq0x

r f
(15)

When Poisson’s contraction of the fiber is considered,
the clamping stress decreases and the axial stress is no
more linear [41]:

σf = σf0{1− exp(−χx)} (16)

with σf0 being a function of the clamping stress on the
fibreq0 and the elastic constant of fibre and matrix, and
χ , a function of the friction coefficientµ and elastic
properties of fibre and matrix.

Fig. 5 represents the frictional stress distribution in
the linear and non linear case. Parameters for the cal-
culation are given in Table I.

It clearly shows that Poisson’s contraction must be
taken into account for large embedded lengths, even for

TABLE I Calculation parameters

Modulus
(GPa) ν Radius (m)

q0 τd
Em Ef νm νf Rm r f µ (MPa) (MPa)

3 73 0.4 0.2 3·10−3 7·10−6 1.25 10 72.7

Figure 5 Pull-out stress versus embedded fibre length according to lin-
ear and non-linear models.

a small value of the Poisson’s ratio. For instance, in the
case of a glass fibre with an embedded length of 1 mm,
the linear model forecasts fibre failure (the value of the
failure strength varies between 1.5 and 3 GPa) whereas
the non linear model predicts fibre pull out.

2.4. Critical comments
The list of above-mentioned models is not exhaustive,
but it is representative of the different approaches devel-
opped in the last decades. Choosing a model for experi-
mental data analysis is a very difficult task, because the
values of interfacial shear strength or interfacial tough-
ness strongly depend on the selected analysis [7].

The mechanical approach based on shear strength
criterion and the energic approach based on fracture
mechanics criterion have been distinguished. There is
no clear justification to use either of these criteria for
predicting debonding behavior.

Wells and Beaumont [2] have however shown that
the debond stress as a function of the fibre radius is
more accurately predicted by the Outwater and Murphy
energetic approach.

Other comparisons have been made [37, 42]. For
small values of the embedded length, pull-out behav-
ior seems to be better described by an analysis based
on a shear strength criterion. Nevertheless, the debond
stress is underestimated for large embedded lengths.
On the contrary, an approach based on the concept of
fracture mechanics better predicts debond behavior for
large embedded lengths.

Fig. 6 shows the partial debond stress as a func-
tion of debond lengthLd for three given embedded
lengthsL = 100,300,500µm. Stress computation has
been made using a mechanical model developped by
Hsueh [31] with the calculation parameters listed in
Table I.

For L = 500µm, the partial debond stress first in-
creases with the debonded length. Consequently, when
debonding is initiated, further increase of the applied
stress is necessary to continue debonding. When the
maximum of the partial debond stress is reached, i.e.
whenL − Ld= zmax, the interface suddenly fails.

The critical value of the bond lengthzmax is shown to
be independent of the embedded lengthL and it mainly

Figure 6 Partial debond stress profiles.
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depends on the ratioτd/τf . A simple expression ofzmax
can be given by assuming a constant frictional shear
stress along the debonded length [22]:

zmax= 1

α
cosh−1

√
τd

τf
(17)

For embedded lengths belowzmax, when debonding
is initiated, no further increase in applied stress is re-
quired to continue the debond process, and thus sudden
and complete debonding occurs. Consequently, a me-
chanical model neglecting friction accurately describes
debond behavior forL ¿ zmax.

On the contrary, for large embedded lengths, com-
plete debonding no more occurs suddenly. In this case,
the contribution of frictional resistance forces acting
over the debonded length must be considered.

Unfortunately, mechanical models which include
friction parameters in the expression of the debond
stress cannot be satisfactory. Indeed, these models do
not consider stress concentration at the crack tip and
thus the debond stress is overestimated.

Most energetic approaches assume a stable crack
propagation along the interface with a constant value
of the interfacial toughnessGi . Consequently, these
theories cannot be applied in case of short embedded
lengths. On the other hand, whenL À zmax, propaga-
tion is almost stable and energetic models are satisfac-
tory if friction is taken into account.

In brief, a mechanical theory neglecting friction can
be applied to totally unstable debonding, whereas an
energetic one can describe stable debonding.

Mai’s model [40], which expresses the partial debond
stress as a function of the crack length seems to be
an interesting way for representing partial debonding.
Unfortunately, the expression of debond stress is very
complex. Furthermore, evaluation of the interfacial pa-
rameters leads to the same values as the ones obtained
with a simpler model [36], thus Mai’s model turns out
to have little practicality.

Consequently, only the two utmost ideal behaviors
of stable and unstable debonding can be correctly pre-
dicted on basis of theoretical model, but there is no
satisfactory model for describing the most current be-
havior of partial debonding. Therefore, we will choose
to compare experimental results to computed data using
both a mechanical model neglecting friction and using
an energetic analysis taking friction into account. This
comparison will give valuable informations about the
debond process in our composite systems and so about
the relevance of the calculated interfacial parameters.

For the fracture mechanics approach, the Gaoet al.’s
model is chosen. Indeed, in this analysis, the debonding
is due to the stable propagation of a crack along the
interface and the friction behavior is included.

Fig. 7 shows the distribution of shear stress based on
shear strength criterion models for an embedded length
L = 1 mm and a loadP0= 1500 MPa. The calculation
parameters are again those of Table I.

Computed maximum shear stress according to the
three theories falls within 1%. This result is similar
for a small embedded length. These discrepancies are

Figure 7 Shear stress distribution according to three mechanical models.

not significant in consideration of the experimental
data scatter. Thus, the simplest analytical expression
of the debonding stress is chosen, that corresponds to
Lawrence’s model.

3. Experimental
3.1. Materials
The matrix is an unsaturated polyester resin with Low
Profile Additives (LPA) and styrene as curing agent
supplied by Cray Valley. The prepolymer (UP) is a 1 : 1
copolymer of maleic anhydride and propylene glycol.
Thermoplastic Low Profile Additives (LPA) have been
added in the UP resins to compensate for the curing
shrinkage. The low profile behavior has been widely
discussed in the literature [42–52], and it has been
shown that phase separation occurs in styrene-UP-LPA
ternary system during curing and that shrinkage com-
pensation is ensured by microvoids formation in the
thermoplastic phase. A poly vinyl acetate PVAc and
a (methyl methacrylate/methacrylic acid/hydroxylated
methacrylate) copolymer PMMA(OH) have been used
as Low Profile Additives. They differ by their initial
miscibility in UP/styrene mixture, PMMA(OH) being
the more miscible additive.

Resin curing was achieved at 90◦C for 30 min, fol-
lowed by a post-curing treatment for 2 h at 140◦C. Cat-
alytic system varied according to the nature of the Low
Profile Additive. It consisted of Perkadox 16 (1.5%) for
PVAc additive and Trigonox C (2%) for PMMA(OH)
additive.

Sized glass fibres have been supplied by Vetrotex
International. The average fibre diameter has been es-
timated to be 14µm. Four sizings were available and
differing both in film former nature (which was either
PVAc or PMMA(OH)) and in their degree of solubility
(which expresses the amount of film former bonded to
the fibre). The main characteristics of the sizings are
summarized in Table II. In that respect systems A and
C are referred to as soluble systems whereas B and D
are quoted as insoluble.

A more detailed description of materials microstruc-
ture will be reported in part II with special emphasis on
interface structure in relation to sizing.
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TABLE I I Sizing characteristics

Specimen Film former Solubilitya

A PVAc 80%
B PVAc 20%
C PMMA(OH) 80%
D PMMA(OH) 20%

aSolubility refers to sizing weight fraction dissolved in tolu`ene.

Figure 8 Sample preparation device.

3.2. Pull out testing
The sample preparation has been carried out using the
equipment depicted in Fig. 8. The fibre is held above the
resin in vertical position by a needle and gripped in a
vice. The vertical displacement of the fibre is achieved
using a micrometric table. The fibre end is brought into
contact with the resin surface, and then the fibre is in-
troduced into the matrix up to the desired embedded
length using the micrometric screw. An optical appara-
tus allows to control this process. Then, matrix curing
is achieved following the above-mentioned procedure.
If no shrinkage or swelling occurs during curing, sam-
ple with controlled embedded length can be obtained
using this apparatus.

The pull-out test has been performed on an Instron
machine (Fig. 9). The sample is held on the upper cross-
head and vertical alignment of the fibre is ensured by
a goniometric head and adjusted with the aid of a tele-
scopic sight. The free end of the fiber is embedded in a
hot melt sealant laid on an electronic scale. The embed-

Figure 9 Pull-out testing configuration.

ded length in the hot melt sealant is such that debonding
and pull-out always occur in the upper part. The scale
is used as a load cell, the tensile load on the fiber during
the test being monitored as the weight loss on the scale.
The crosshead speed has been set at 50µm/min.

Embedded lengths were measured after the pull-
out process. In PVAc systems, the difference between
planned and actually measured embedded length did
not exceed 20µm. On the contrary, due to a swelling
effect that occurred in systems containing PMMA(OH)
as a Low Profile Additive, embedded lengths were sys-
tematically measured after pull-out test and data corre-
sponding to fibre failure have not been plotted.

4. Results
4.1. Shape of the pull-out curve
The tensile load on the fibre has been recorded as a func-
tion of the displacement of the upper crosshead. Typi-
cal experimental pull-out curves are shown in Fig. 10.
First, consider the Type 1 pull-out curve depicted in
Fig. 10. At the start of the test, the system is elas-
tically loaded, nevertheless the curve does not keep
a linear shape and some jerks occasionally occur as
the load is increased. These observations indicate that
debonding is neither complete nor sudden. When the
load maximum is reached, debonding is complete and
load abruptly falls. The fibre free length elastic relax-
ation leads to partial fibre pull out [39]. The second
part of the curve corresponds to the fibre pull-out with
a pronounced stick-slip phenomenon.

Type 2 pull-out curve also depicted in Fig. 10 was
only observed in system D for large embedded lengths.
In this case, the curve shows a sequence of rise and

Figure 10 Typical pull-out curves.
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fall of the load. Debond and pull-out processes can no
more be distinguished so that the debond load cannot
be determined. Differentiation between these two kinds
of behavior will be made on plots giving the debonding
load versus embedded length, and in the case of the
latter the reported load will be the recorded maximum
load.

4.2. Debond load versus embedded length
4.2.1. PVAc based systems
Plots of debond load versus embedded length are re-
ported on Fig. 11. Generally, the load necessary to
debond and pull out the fibre increases with the em-
bedded length, so that fibre failure can occur when the
embedded length exceeds a critical value. This critical
embedded length is defined by the border-line between
fibre pull-out and fibre failure regimes.

It can be seen from Fig. 11a and b that systems A and
B cannot be differentiated in term of critical embedded
length, which is about 500µm in both cases. Never-
theless, two types of behaviors can be distinguished.
Indeed, in system B, the debond load continuously in-
creases with the embedded length while high values of
debond load are already recorded for small values of
the embedded length in system A.

Figure 11 Fd/2r f versus embedded fibre length for Systems A and B.

Figure 12 Fd/2r f versus embedded fibre length for Systems C and D.

4.2.2. PMMA(OH) based systems
Fig. 12 shows the debond load versus embedded length
for system C. The load level for which fibre failure
occurs is pointed out by a grey strip. The C system
shows similar features as system A, i.e. high values of
debond load for small embedded lengths.

Results concerning the D system are reported on the
same figure. Regarding conventional pull-out data, the
debond load increases with embedded length as in B
system. For large embedded lengths, pull-out curves
show the features of type 2 behaviour in Fig. 10 and the
maximum loads are lower than the ones recorded for a
value of embedded length equal to 400µm (Type 1).
Note that fibre failure has never been observed. The
abrupt change in pull-out behavior can be explained
by a microstructure heterogeneity of the matrix at the
sample surface. Nevertheless, it does not affect the pull-
out behavior of system C. This point will be discussed
later.

4.3. Interfacial parameters determination
For the D system, only Type 1 data are considered for
the determination of the interfacial parameters.

4.3.1. Lawrence’s model
Interfacial parameters are the interfacial shear strength
τd and the coefficientα. The average shear strength
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Figure 13 Average shear stress versus embedded length for Systems A
and B.

TABLE I I I Interfacial parameters in Lawrence’s analysis

Ref. A B C D

τd (MPa) 50 160 65 120 60

α 9644 27440 9490 16692 10603

is reported as a function of the embedded fibre length
(Figs 13 and 14) andτd andα are fitted to experimental
results using Equation 4:

τa = Fd

2πr f L
= τd

tanh(αL)

αL
(4)

Results are summarized in Table III and compared to
reference values. The matrix shear strength is estimated
to 50 MPa andα is computed using Equation 5 and data
from Table I.

Regarding insoluble systems B and D, a good agree-
ment between theoretical and experimental values is
obtained. On the contrary, the debond shear strength
in systems A and C widely exceeds the matrix shear
strength. Consequently the values of these interfacial
parameters are unrealistic and Lawrence’s model is not
suitable to describe the behavior of soluble systems A
and C. Therefore, the comparison of experimental re-

Figure 14 Average shear stress versus embedded length for Systems C
and D.

sults to Lawrence’s model shows a differentiation in
terms of the degree of sizing solubility.

4.3.2. Gao et al.’s model
Interfacial parameters are the interfacial toughnessGi ,
the clamping stressq0 and the friction coefficientµ.
The determination of Gaoet al. interfacial parameters
is detailed in Appendix.q0 andµ are first determined
using the second part of the pull-out curve (Fig. 10
type 1) and the friction stress is reported as a function
of the embedded fibre length (Figs 15 and 16). Then,
the calculated values ofq0 andµ are reintroduced to
determine the interfacial toughnessGi from plots of the
debond stress versus the embedded length (Figs 17 and
18). Results are summarized in Table IV.

The friction behavior is notably affected by the na-
ture of the sizing in PVAc systems, while the values

TABLE IV Interfacial parameters in Gaoet al.’s analysis

A B C D

µ 5 2 2 1.5

q0 (MPa) 10 15 10 10
Gi (J/m2) 110 65 180 30

489



P1: SDI/RAM P2: SDI/RNT P3: SNH/ATR QC: SNH 09-5175-98 December 31, 1998 17:14

Figure 15 Frictional stress versus embedded length for Systems A and
B.

are almost the same in PMMA(OH). Regarding the
interfacial toughness, once again the degree of sizing
solubility seems to be a determining parameter on the
debonding process. For soluble sizings, this model pro-
vides a good agreement between experimental results
and theoretical curve, while Lawrence’s model was not
satisfactory for these systems. On the contrary, the small
embedded lengths are not correctly taken into account
for insoluble sizings (Fig. 18).

5. Discussion
Results suggest that the interfacial response is mainly
affected by the sizing nature, especially its degree of
solubility.

In soluble systems, it has been shown that Lawrence’s
model leads to inconsistent values of interfacial pa-
rameters, so it cannot be applied to these systems. On
the other hand, Gaoet al.’s model provides a good
fit between theory and experimental data. The latter
is not true for insoluble systems where the model based
on fracture mechanics criterion always overestimates
the debond stress for short embedded length while
Lawrence’s mechanical model describes fairly well the
debonding process over the whole range of embedded
fibre lengths.

Figure 16 Frictional stress versus embedded length for Systems C and
D.

5.1. Debonding process
In the first part of this work, it has been pointed out
that a model based on a shear strength criterion which
neglects friction effects is suitable for describing a to-
tally unstable and complete debonding process, while
a model based on a fracture mechanics criterion which
takes friction into account is satisfactory in the case
of a totally stable debonding. This statement leads to
fundamental conclusions about the debonding process
in our composite systems: the debonding is rather un-
stable in insoluble systems and rather stable in soluble
systems.

Nevertheless, stability of the debonding process does
not only depend on the nature of the interface. The rela-
tive degree of agreement obtained between theories and
experiments also depends on embedded fibre lengths.
Gaoet al.’s model predicts the magnitude of the debond
stressσd fairly well for long embedded lengthsL but
overestimatesσd at small L. In contrast, Lawrence’s
model satisfactory forecastsσd for shortL and tends to
underestimate slightlyσd asL is increased.

The border line between complete and partial
debonding is given byzmax. This critical length can
be estimated using Equation 17. In soluble systems A
and C, the values ofα andτd are not available, thus
zmax is computed using reference data from Table III.
Results are given in Table V.
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TABLE V Estimate ofzmax

A B C D

zmax (µm) ∼0 100 100 130

Figure 17 Debond stress versus embedded length for Systems A and B.

For PVAc based systems, the values ofzmax are
strongly different, which supports the above conclu-
sions about the stability of debonding in relation to
sizing solubility. This difference is not as pronounced
in PMMA(OH) based systems.

Since both theories are not suitable for predicting the
debond stress over the whole range of embedded fibre
lengths, a second evaluation of interfacial parameters
is made.

Application of Gaoet al.’s model is reconsidered
only for large embedded lengths. Results are given in
Table VI.

Once again the difference between the two evalua-
tions is more pronounced in PVAc based systems than in

TABLE VI Values ofGi (J/m2)

A B C D

First evaluation 110 65 180 30
Second evaluation 140 20 180 40

Figure 18 Debond stress versus embedded length for Systems C and D.

PMMA(OH) based systems. Since frictional resistance
forces are very high in PVAc based systems, interfacial
toughness is overestimated when the whole range of
embedded lengths is taken into account. In contrast, in
PMMA(OH) based systems, frictional parameters are
lower, so a second fit does not lead to great variations
in the final result.

Regarding Lawrence’s model, any significant change
in the derived values ofτd and α is obtained when

Figure 19 Maximum stress versus embedded length for System D.

491



P1: SDI/RAM P2: SDI/RNT P3: SNH/ATR QC: SNH 09-5175-98 December 31, 1998 17:14

Figure 20 Sample surface morphology: (a) microtomed specimen, (b) fracture surface.
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only small embedded fibre lengths are taken into ac-
count for insoluble systems B and D. Thus, Lawrence’s
model appears to be very satisfactory for describing the
debonding process in these systems, even if the fitting
curve diverges from experimental data asL increases.
For soluble systems A and C, a second fit is not possi-
ble since data for small embedded fibre lengths are not
available.

The second evaluation of interfacial parameters rein-
forces our preliminary conclusions. Either Lawrence’s
model or Gaoet al.’s model are unable to provide a
satisfactory answer over the whole range of embedded
fibre lengths, but the confrontation of these models to
experimental results end up with a rather clear picture
of the debonding process. Indeed, it has been shown
that the trend of debonding process is unstable for in-
soluble systems B and D and stable for soluble systems
A and C.

The comparison between experimental data and
those simple models either based on a mechanical crite-
rion or a fracture mechanics criterion thus proves to be
a very attractive way for the interpretation of pull-out
test and consequently the use of more complex theories
is not quite justified.

5.2. Matrix microstructural heterogeneity in
PMMA(OH) based systems

Results concerning system D have shown two kinds of
behavior depending on the embedded fibre lengths. For
small embedded length (below 500µm), Type 1 con-
ventional pull-out curves are observed. For larger em-
bedded lengths, the pull-out curves show a sequence of
rise and fall of the load. The maxima of Type 2 pull-
out curves are reported as a function of the embed-
ded length in Fig. 19 and compared with the frictional
stress (computed using the following valuesµ= 1.5
andq0= 10 MPa). Once again a change in pull-out be-
havior is revealed atL = 500µm. The recorded stress
level is always below the frictional stress when the em-
bedded length exceeds a critical value, thus all interfa-
cial parameters are modified from this critical depth.

It is thus worth looking for the existence of a mi-
crostructural heterogeneity in order to explain this
change in pull-out behavior as the embedded length
is increased. Consequently, the matrix morphology at
the sample surface is investigated by scanning elec-
tron microscopy. A specimen is microtomed and gold-
coated in order to reveal the presence of cavities. An-
other one is broken into several pieces and then etched
in dichloromethane to dissolve the soluble material on
the fracture surfaces in order to reveal the macrogels.

The scanning electron micrograph of Fig. 20a clearly
shows the typical morphological features of a two phase
UP resin/LPA system. Indeed, it reveals the presence of
LPA composites particles, each containing numerous
UP subinclusions in a polyester matrix. It is also seen
that particle sizes decrease as the depth from the sample
surface increases. No microvoids have been revealed at
the sample surface, nevertheless cavities appear up to
a certain depth. The discontinuity is clearly shown on
Fig. 20b. These observations indicate the presence of a

miscibility gradient at the sample surface. This change
in miscibility may be due to the styrene evaporation
during pull-out sample preparation and matrix curing.

The matrix heterogeneity is clearly revealed in
PMMA(OH) based systems. Two questions arise from
this observation. The first one is to determine how this
matrix heterogeneity interacts with the pull-out behav-
ior of system D and the second is to understand why it
does not affect the pull-out behavior of system C.

For system D, the above results obtained from Type 1
data show that the debonding is almost unstable. Crack
initiation requires a high stress level but its propaga-
tion is relatively easy. For large embedded fibre lengths
(L > 500µm), the presence of cavities near the interfa-
cial region can promote crack initiation and interfacial
debonding can occur at a lower stress level as it has
been observed.

Regarding system C, it has been established that
debonding is almost stable. Consequently, even if crack
initiation is promoted for large embedded fibre lengths,
its propagation along the interface requires a high stress
level. Moreover, the critical embedded fibre length
(from which fibre failure occurs) is about 500µm,
which correspond to the border-line between the two
types of behavior in system D. For these reasons, no
discontinuity in the pull-out behavior is observed for
this system.

The micromechanical implication of matrix hetero-
geneity in PMMA(OH) based systems leads us to re-
consider the PVAc based systems. The same morpho-
logical study has been carried out on the latter. No
change in system miscibility has been observed at the
sample surface and no cavitation has been revealed
down to a depth of about 1 mm (which is above the
critical embedded fibre length for these systems).

A closer look at the correlation between mechanical
behavior and the local interface microstructure will be
given in the second part of this paper.

6. Conclusion
Based on a critical review, two distinct approaches for
the interpretation of pull-out test data have been se-
lected. The first one based on a mechanical criterion is
satisfactory for describing unstable debonding while
the second predicts well a stable crack propagation
along the interface.

Four composite systems have been studied. Results
have shown that sizing solubility is a major parameter
which determines the debonding behavior.

This micromechanical study provides interesting re-
sults regarding the debonding process. In soluble sys-
tems A and C, the debonding is almost stable while it
is almost unstable in insoluble systems B and D.

As a secondary effect, a change in pull-out behavior
has been observed for embedded fibre lengths above
500µm in system D. This discontinuity has been at-
tributed to the matrix microstructural heterogeneity
near the sample surface. No change in behavior has
been observed for system C due to the debonding sta-
bility in this system.
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Appendix
Gaoet al.expressed the partial debond stress as:

σ
p
d = σ0+ (σ̄ − σ0){1− exp(−λLd)} (A1)

with

σ0 =
√

4EfGi

r f (1− 2kνf )
(A2)

λ = 2µk

r f
(A3)

σ̄ = −q0

k

(
1+ γ

ϕ

νm

νf

)
(A4)

ϕ = Em

Ef
(A5)

γ = r 2
f

R2
m− r 2

f

(A6)

k = ϕνf + γ νm

ϕ(1− νf )+ 1+ νm+ 2γ
(A7)

Debonding is complete whenLd= L and then the total
debond stress is given by:

σd = σ0+ (σ̄ − σ0){1− exp(−λL)} (A8)

When debonding is complete, only frictional resistance
forces act over the debonded length. The friction stress
is obtained by replacingσ0 by 0 in Equation A8.

σf = σ̄ {1− exp(−λL)} (A9)

The first part of the pull-out curve (Fig. 21) corresponds
to the debond process. When the maximum load is
reached, debonding is complete. The maximum load
Fd leads to the total debond stress.

The abrupt fall in load after debonding leads to a par-
tial fibre pull-out. Penn and Lee [39] have shown that
the partial pull-out fibre length is equal to the displace-
mentu1 of the upper crosshead.

Consequently, the recorded loadFf1 is not the load
required to pull-out a fibre with an embedded length
equal toL but equal to (L − u1), as Ff2 is the load

Figure 21 Gaoet al.’s parameters determination.

required to pull out a fibre with an embedded length
(L − u2), etc. Then, the frictional stress is reported as
a function of (L − ui ). The determination of both the
friction coefficient and the clamping stress is based on
these data using the following equation:

σfi = σ̄ {1− exp[−λ(L − ui )]} (A10)

The calculated values of frictional parameters are rein-
troduced to determine the interfacial toughness from
the plot of debond stress versus embedded length using
Equation A8 and elastic constants of Table I.
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